Table: Signups
+----------------+----------+
| Column Name | Type |
+----------------+----------+
| user_id | int |
| time_stamp | datetime |
+----------------+----------+
user_id is the column of unique values for this table.
Each row contains information about the signup time for the user with ID user_id.
Table: Confirmations
+----------------+----------+
| Column Name | Type |
+----------------+----------+
| user_id | int |
| time_stamp | datetime |
| action | ENUM |
+----------------+----------+
(user_id, time_stamp) is the primary key (combination of columns with unique values) for this table.
user_id is a foreign key (reference column) to the Signups table.
action is an ENUM (category) of the type ('confirmed', 'timeout')
Each row of this table indicates that the user with ID user_id requested a confirmation message at time_stamp and that confirmation message was either confirmed ('confirmed') or expired without confirming ('timeout').
The confirmation rate of a user is the number of 'confirmed' messages divided by the total number of requested confirmation messages. The confirmation rate of a user that did not request any confirmation messages is 0. Round the confirmation rate to two decimal places.
Write a solution to find the confirmation rate of each user.
Return the result table in any order.
The result format is in the following example.
Example 1:
Input:
Signups table:
+---------+---------------------+
| user_id | time_stamp |
+---------+---------------------+
| 3 | 2020-03-21 10:16:13 |
| 7 | 2020-01-04 13:57:59 |
| 2 | 2020-07-29 23:09:44 |
| 6 | 2020-12-09 10:39:37 |
+---------+---------------------+
Confirmations table:
+---------+---------------------+-----------+
| user_id | time_stamp | action |
+---------+---------------------+-----------+
| 3 | 2021-01-06 03:30:46 | timeout |
| 3 | 2021-07-14 14:00:00 | timeout |
| 7 | 2021-06-12 11:57:29 | confirmed |
| 7 | 2021-06-13 12:58:28 | confirmed |
| 7 | 2021-06-14 13:59:27 | confirmed |
| 2 | 2021-01-22 00:00:00 | confirmed |
| 2 | 2021-02-28 23:59:59 | timeout |
+---------+---------------------+-----------+
Output:
+---------+-------------------+
| user_id | confirmation_rate |
+---------+-------------------+
| 6 | 0.00 |
| 3 | 0.00 |
| 7 | 1.00 |
| 2 | 0.50 |
+---------+-------------------+
Explanation:
User 6 did not request any confirmation messages. The confirmation rate is 0.
User 3 made 2 requests and both timed out. The confirmation rate is 0.
User 7 made 3 requests and all were confirmed. The confirmation rate is 1.
User 2 made 2 requests where one was confirmed and the other timed out. The confirmation rate is 1 / 2 = 0.5.
# 쿼리를 작성하는 목표, 확인할 지표 : 유저 별로 confirmed의 비율 구하기 / action
# 쿼리 계산 방법 : 1. signup 테이블을 기준으로 join -> 2. 유저별로 total과 confirmed 수 구하기(action 기록이 아예 없거나 confirmed가 없으면 0으로 표시되어야 함) -> 3. confirmed 비율 계산 -> 4. NULL 이면 0
# 데이터의 기간 : x
# 사용할 테이블 : signups, confirmations
# JOIN KEY : user_id
# 데이터 특징 : x
# 1
WITH base AS (
SELECT
s.user_id,
c.action
FROM signups AS s
LEFT JOIN confirmations AS c
ON s.user_id = c.user_id
)
SELECT
# 3 & 4
DISTINCT
user_id,
COALESCE(ROUND(confirmed_cnt / total_cnt, 2), 0) AS confirmation_rate
FROM (
# 2
SELECT
user_id,
SUM(CASE WHEN action IS NOT NULL THEN 1 ELSE 0 END) OVER(PARTITION BY user_id) AS total_cnt,
SUM(CASE WHEN action = 'confirmed' THEN 1 ELSE 0 END) OVER(PARTITION BY user_id) AS confirmed_cnt
FROM base
) AS a
'[SQL]' 카테고리의 다른 글
LeetCode 코딩 테스트 - Analyze Subscription Conversion(LV.Medium) (0) | 2025.04.02 |
---|---|
LeetCode 코딩 테스트 - DNA Pattern Recognition(LV.Medium) (0) | 2025.04.01 |
LeetCode 코딩 테스트 - Count Salary Categories(LV.Medium) (0) | 2025.03.27 |
LeetCode 코딩 테스트 - Nth Highest Salary(LV.Medium) (0) | 2025.03.25 |
LeetCode 코딩 테스트 - Game Play Analysis IV(LV.Medium) (0) | 2025.03.24 |