Table: Movies
+---------------+---------+
| Column Name | Type |
+---------------+---------+
| movie_id | int |
| title | varchar |
+---------------+---------+
movie_id is the primary key (column with unique values) for this table.
title is the name of the movie.
Table: Users
+---------------+---------+
| Column Name | Type |
+---------------+---------+
| user_id | int |
| name | varchar |
+---------------+---------+
user_id is the primary key (column with unique values) for this table.
The column 'name' has unique values.
Table: MovieRating
+---------------+---------+
| Column Name | Type |
+---------------+---------+
| movie_id | int |
| user_id | int |
| rating | int |
| created_at | date |
+---------------+---------+
(movie_id, user_id) is the primary key (column with unique values) for this table.
This table contains the rating of a movie by a user in their review.
created_at is the user's review date.
Write a solution to:
- Find the name of the user who has rated the greatest number of movies. In case of a tie, return the lexicographically smaller user name.
- Find the movie name with the highest average rating in February 2020. In case of a tie, return the lexicographically smaller movie name.
The result format is in the following example.
Example 1:
Input:
Movies table:
+-------------+--------------+
| movie_id | title |
+-------------+--------------+
| 1 | Avengers |
| 2 | Frozen 2 |
| 3 | Joker |
+-------------+--------------+
Users table:
+-------------+--------------+
| user_id | name |
+-------------+--------------+
| 1 | Daniel |
| 2 | Monica |
| 3 | Maria |
| 4 | James |
+-------------+--------------+
MovieRating table:
+-------------+--------------+--------------+-------------+
| movie_id | user_id | rating | created_at |
+-------------+--------------+--------------+-------------+
| 1 | 1 | 3 | 2020-01-12 |
| 1 | 2 | 4 | 2020-02-11 |
| 1 | 3 | 2 | 2020-02-12 |
| 1 | 4 | 1 | 2020-01-01 |
| 2 | 1 | 5 | 2020-02-17 |
| 2 | 2 | 2 | 2020-02-01 |
| 2 | 3 | 2 | 2020-03-01 |
| 3 | 1 | 3 | 2020-02-22 |
| 3 | 2 | 4 | 2020-02-25 |
+-------------+--------------+--------------+-------------+
Output:
+--------------+
| results |
+--------------+
| Daniel |
| Frozen 2 |
+--------------+
Explanation:
Daniel and Monica have rated 3 movies ("Avengers", "Frozen 2" and "Joker") but Daniel is smaller lexicographically.
Frozen 2 and Joker have a rating average of 3.5 in February but Frozen 2 is smaller lexicographically.
# 쿼리를 작성하는 목표, 확인할 지표 : 가장 많이 평가를 남긴 유저 이름 & 가장 높은 평가를 받은 영화 이름 출력 / user_id, rating
# 쿼리 계산 방법 : 1. group by user_id -> 2. order by로 count 내림차순, name오름차순 limit 1로 첫 행만 추출 -> 3. 2020년 2월에 한해서 group by movie_id -> 4. order by로 avg 내림차순, title오름차순 limit 1 -> 5. union all
# 데이터의 기간 : avg 구할때 한해서 2020년 2월
# 사용할 테이블 : movies, users, movierating
# JOIN KEY : movie_id, user_id
# 데이터 특징 : x
WITH name AS (
SELECT
u.name
FROM movierating AS mr
INNER JOIN users AS u
ON mr.user_id = u.user_id
# 1
GROUP BY
mr.user_id
# 2
ORDER BY
COUNT(*) DESC, u.name ASC
LIMIT 1
), title AS (
SELECT
m.title
FROM movierating AS mr
INNER JOIN movies AS m
ON mr.movie_id = m.movie_id
# 3
WHERE
DATE_FORMAT(created_at, '%Y-%m') = '2020-02'
GROUP BY
mr.movie_id
# 4
ORDER BY
AVG(mr.rating) DESC, m.title ASC
LIMIT 1
)
SELECT
name AS results
FROM name
# 5
UNION ALL
SELECT
title
FROM title
'[SQL]' 카테고리의 다른 글
LeetCode 코딩 테스트 - Nth Highest Salary(LV.Medium) (0) | 2025.03.25 |
---|---|
LeetCode 코딩 테스트 - Game Play Analysis IV(LV.Medium) (0) | 2025.03.24 |
LeetCode 코딩 테스트 - Second Highest Salary(LV.Medium) (0) | 2025.03.22 |
LeetCode 코딩 테스트 - Product Sales Analysis III(LV.Medium) (0) | 2025.03.19 |
LeetCode 코딩 테스트 - Consecutive Numbers(LV.Medium) (0) | 2025.03.18 |